Building R Packages

Roger D. Peng, Professor of Biostatistics

August 26, 2016



What is an R Package?

v

A mechanism for extending the basic functionality of R

A collection of R functions, or other (data) objects

» Organized in a systematic fashion to provide a minimal amount
of consistency

» Written by users/developers everywhere

v



Where are These R Packages?

» Primarily available from CRAN and Bioconductor

» Also available from GitHub, Bitbucket, Gitorious, etc. (and
elsewhere)

» Packages from CRAN /Bioconductor can be installed with
install.packages()

» Packages from GitHub can be installed using
install_github() from the devtools package

You do not have to put a package on a central repository, but doing
so makes it easier for others to install your package.



What's the Point?

vV vV VvV V. Y VY

“Why not just make some code available?”
Documentation / vignettes

Centralized resources like CRAN

Minimal standards for reliability and robustness
Maintainability / extension

Interface definition / clear API

Users know that it will at least load properly



Package Development Process

Write some code in an R script file (.R)
Want to make code available to others
Incorporate R script file into R package structure
Write documentation for user functions

vV vy vV VY

Include some other material (examples, demos, datasets,
tutorials)
» Package it up!



Package Development Process

» Submit package to CRAN or Bioconductor

» Push source code repository to GitHub or other source code
sharing web site

» People find all kinds of problems with your code

» Scenario #1: They tell you about those problems and expect
you to fix it

» Scenario #2: They fix the problem for you and show you the
changes

» You incorporate the changes and release a new version



R Package Essentials

v

An R package is started by creating a directory with the name
of the R package

A DESCRIPTION file which has info about the package

R code! (in the R/ sub-directory)

Documentation (in the man/ sub-directory)

NAMESPACE

Full requirements in Writing R Extensions

vV v vV VY



The DESCRIPTION File

» Package: Name of package (e.g. library(name))
» Title: Full name of package
» Description: Longer description of package in one sentence

vV v v Y

(usually)
Version: Version number (usually M.m-p format)

Author, Authors@R: Name of the original author(s)
Maintainer: Name + email of person who fixes problems
License: License for the source code


mailto:Authors@R

The DESCRIPTION File

These fields are optional but commonly used

» Depends: R packages that your package depends on

» Suggests: Optional R packages that users may want to have
installed

Date: Release date in YYYY-MM-DD format

URL: Package home page

Other fields can be added

v

v

v



DESCRIPTION File: gpclib

Package: gpclib Title: General Polygon Clipping Library for R
Description: General polygon clipping routines for R based on Alan
Murta's C library. Version: 1.5-5 Author: Roger D. Peng
rpeng@jhsph.edu with contributions from Duncan Murdoch and
Barry Rowlingson; GPC library by Alan Murta Maintainer: Roger D.
Peng rpeng®@jhsph.edu License: file LICENSE Depends: R (>=
2.14.0), methods Imports: graphics Date: 2013-04-01 URL:
http://www.cs.man.ac.uk/~toby/gpc/,
http://github.com/rdpeng/gpclib


mailto:rpeng@jhsph.edu
mailto:rpeng@jhsph.edu
http://www.cs.man.ac.uk/~toby/gpc/
http://github.com/rdpeng/gpclib

R Code

Copy R code into the R/ sub-directory

There can be any number of files in this directory
Usually separate out files into logical groups

Code for all functions should be included here and not
anywhere else in the package

vV v vy



The NAMESPACE File

> Used to indicate which functions are exported

» Exported functions can be called by the user and are considered
the public API

» Non-exported functions cannot be called directly by the user
(but the code can be viewed)

» Hides implementation details from users and makes a cleaner
package interface



The NAMESPACE File

» You can also indicate what functions you import from other
packages

» This allows for your package to use other packages without
making other packages visible to the user

» Importing a function loads the package but does not attach it
to the search list



The NAMESPACE File

Key directives

» export(“<function>")
» import(“<package>")
» importFrom(“<package>", “<function>")

Also important

» exportClasses(“<class>")
» exportMethods(*“<generic>")



NAMESPACE File: mvtsplot package

export ("mvtsplot")

import (splines)

import (RColorBrewer)

importFrom("grDevices", "colorRampPalette", "gray")

importFrom("graphics", "abline", "axis", "box", "image",
"layout", "lines", "par", "plot", "points",
"segments", "strwidth", "text", "Axis")

importFrom("stats", "complete.cases", "lm", "na.exclude",
"predict", "quantile")



NAMESPACE File: gpclib package

export("read.polyfile", "write.polyfile")

importFrom(graphics, plot)

exportClasses("gpc.poly", "gpc.poly.nohole")

exportMethods("show", "get.bbox", "plot", "intersect", "un:
"setdiff", "[", "append.poly", "scale.poly",

"area.poly", "get.pts", "coerce", "tristrip"
"triangulate")



Documentation

Documentation files (.Rd) placed in man/ sub-directory
Written in a specific markup language

Required for every exported function

Another reason to limit exported functions

You can document other things like concepts, package overview

vV v v.VvYy



Help File Example: 1ine Function

\name{line}
\alias{line}
\alias{residuals.tukeyline}
\title{Robust Line Fitting}
\description{
Fit a line robustly as recommended in \emph{Exploratory !

}



Help File Example: 1ine Function

\usage{
line(x, y)
}
\arguments{
\item{x, y}{the arguments can be any way of specifying x:
\code{\link{xy.coords}}.}



Help File Example: 1ine Function

\detailsq{
Cases with missing values are omitted.

Long vectors are not supported.

+
\value{
An object of class \code{"tukeyline"}.

Methods are available for the generic functions \code{co
\code{residuals}, \code{fitted}, and \code{print}.
X



Help File Example: 1ine Function

\references{
Tukey, J. W. (1977).
\emph{Exploratory Data Analysis},
Reading Massachusetts: Addison-Wesley.

}



Building and Checking

v

R CMD build is a command-line program that creates a
package archive file (.tar.gz)

R CMD check runs a battery of tests on the package

» You can run R CMD build or R CMD check from the
command-line using a terminal or command-shell application

v

v

You can also run them from R using the system() function

system("R CMD build newpackage")
system("R CMD check newpackage")



Checking

R CMD check runs a battery tests

Documentation exists

Code can be loaded, no major coding problems or errors
Run examples in documentation

Check docs match code

All tests must pass to put package on CRAN

vV vy V. V. VY



Getting Started

» The package.skeleton() function in the utils package
creates a “skeleton” R package

» Directory structure (R/, man/), DESCRIPTION file,
NAMESPACE file, documentation files

» If there are functions visible in your workspace, it writes R code
files to the R/ directory

» Documentation stubs are created in man/

> You need to fill in the rest!



Summary

» R packages provide a systematic way to make R code available
to others

» Standards ensure that packages have a minimal amount of
documentation and robustness

» Obtained from CRAN, Bioconductor, Github, etc.



Summary

v

Create a new directory with R/ and man/ sub-directories (or
just use package.skeleton())

Write a DESCRIPTION file

Copy R code into the R/ sub-directory

Write documentation files in man/ sub-directory

Write a NAMESPACE file with exports/imports

Build and check

vV v v vY



