
Building R Packages

Roger D. Peng, Professor of Biostatistics

August 26, 2016



What is an R Package?

I A mechanism for extending the basic functionality of R
I A collection of R functions, or other (data) objects
I Organized in a systematic fashion to provide a minimal amount

of consistency
I Written by users/developers everywhere



Where are These R Packages?

I Primarily available from CRAN and Bioconductor
I Also available from GitHub, Bitbucket, Gitorious, etc. (and

elsewhere)
I Packages from CRAN/Bioconductor can be installed with

install.packages()
I Packages from GitHub can be installed using

install_github() from the devtools package

You do not have to put a package on a central repository, but doing
so makes it easier for others to install your package.



What’s the Point?

I “Why not just make some code available?”
I Documentation / vignettes
I Centralized resources like CRAN
I Minimal standards for reliability and robustness
I Maintainability / extension
I Interface definition / clear API
I Users know that it will at least load properly



Package Development Process

I Write some code in an R script file (.R)
I Want to make code available to others
I Incorporate R script file into R package structure
I Write documentation for user functions
I Include some other material (examples, demos, datasets,

tutorials)
I Package it up!



Package Development Process

I Submit package to CRAN or Bioconductor
I Push source code repository to GitHub or other source code

sharing web site
I People find all kinds of problems with your code
I Scenario #1: They tell you about those problems and expect

you to fix it
I Scenario #2: They fix the problem for you and show you the

changes
I You incorporate the changes and release a new version



R Package Essentials

I An R package is started by creating a directory with the name
of the R package

I A DESCRIPTION file which has info about the package
I R code! (in the R/ sub-directory)
I Documentation (in the man/ sub-directory)
I NAMESPACE
I Full requirements in Writing R Extensions



The DESCRIPTION File

I Package: Name of package (e.g. library(name))
I Title: Full name of package
I Description: Longer description of package in one sentence

(usually)
I Version: Version number (usually M.m-p format)
I Author, Authors@R: Name of the original author(s)
I Maintainer: Name + email of person who fixes problems
I License: License for the source code

mailto:Authors@R


The DESCRIPTION File

These fields are optional but commonly used

I Depends: R packages that your package depends on
I Suggests: Optional R packages that users may want to have

installed
I Date: Release date in YYYY-MM-DD format
I URL: Package home page
I Other fields can be added



DESCRIPTION File: gpclib

Package: gpclib Title: General Polygon Clipping Library for R
Description: General polygon clipping routines for R based on Alan
Murta’s C library. Version: 1.5-5 Author: Roger D. Peng
rpeng@jhsph.edu with contributions from Duncan Murdoch and
Barry Rowlingson; GPC library by Alan Murta Maintainer: Roger D.
Peng rpeng@jhsph.edu License: file LICENSE Depends: R (>=
2.14.0), methods Imports: graphics Date: 2013-04-01 URL:
http://www.cs.man.ac.uk/~toby/gpc/,
http://github.com/rdpeng/gpclib

mailto:rpeng@jhsph.edu
mailto:rpeng@jhsph.edu
http://www.cs.man.ac.uk/~toby/gpc/
http://github.com/rdpeng/gpclib


R Code

I Copy R code into the R/ sub-directory
I There can be any number of files in this directory
I Usually separate out files into logical groups
I Code for all functions should be included here and not

anywhere else in the package



The NAMESPACE File

I Used to indicate which functions are exported
I Exported functions can be called by the user and are considered

the public API
I Non-exported functions cannot be called directly by the user

(but the code can be viewed)
I Hides implementation details from users and makes a cleaner

package interface



The NAMESPACE File

I You can also indicate what functions you import from other
packages

I This allows for your package to use other packages without
making other packages visible to the user

I Importing a function loads the package but does not attach it
to the search list



The NAMESPACE File

Key directives

I export(“<function>”)
I import(“<package>”)
I importFrom(“<package>”, “<function>”)

Also important

I exportClasses(“<class>”)
I exportMethods(“<generic>”)



NAMESPACE File: mvtsplot package

export("mvtsplot")
import(splines)
import(RColorBrewer)
importFrom("grDevices", "colorRampPalette", "gray")
importFrom("graphics", "abline", "axis", "box", "image",

"layout", "lines", "par", "plot", "points",
"segments", "strwidth", "text", "Axis")

importFrom("stats", "complete.cases", "lm", "na.exclude",
"predict", "quantile")



NAMESPACE File: gpclib package

export("read.polyfile", "write.polyfile")

importFrom(graphics, plot)

exportClasses("gpc.poly", "gpc.poly.nohole")

exportMethods("show", "get.bbox", "plot", "intersect", "union",
"setdiff", "[", "append.poly", "scale.poly",
"area.poly", "get.pts", "coerce", "tristrip",
"triangulate")



Documentation

I Documentation files (.Rd) placed in man/ sub-directory
I Written in a specific markup language
I Required for every exported function
I Another reason to limit exported functions
I You can document other things like concepts, package overview



Help File Example: line Function

\name{line}
\alias{line}
\alias{residuals.tukeyline}
\title{Robust Line Fitting}
\description{

Fit a line robustly as recommended in \emph{Exploratory Data Analysis}.
}



Help File Example: line Function

\usage{
line(x, y)
}
\arguments{

\item{x, y}{the arguments can be any way of specifying x-y pairs. See
\code{\link{xy.coords}}.}

}



Help File Example: line Function

\details{
Cases with missing values are omitted.

Long vectors are not supported.
}
\value{

An object of class \code{"tukeyline"}.

Methods are available for the generic functions \code{coef},
\code{residuals}, \code{fitted}, and \code{print}.

}



Help File Example: line Function

\references{
Tukey, J. W. (1977).
\emph{Exploratory Data Analysis},
Reading Massachusetts: Addison-Wesley.

}



Building and Checking

I R CMD build is a command-line program that creates a
package archive file (.tar.gz)

I R CMD check runs a battery of tests on the package
I You can run R CMD build or R CMD check from the

command-line using a terminal or command-shell application
I You can also run them from R using the system() function

system("R CMD build newpackage")
system("R CMD check newpackage")



Checking

I R CMD check runs a battery tests
I Documentation exists
I Code can be loaded, no major coding problems or errors
I Run examples in documentation
I Check docs match code
I All tests must pass to put package on CRAN



Getting Started

I The package.skeleton() function in the utils package
creates a “skeleton” R package

I Directory structure (R/, man/), DESCRIPTION file,
NAMESPACE file, documentation files

I If there are functions visible in your workspace, it writes R code
files to the R/ directory

I Documentation stubs are created in man/
I You need to fill in the rest!



Summary

I R packages provide a systematic way to make R code available
to others

I Standards ensure that packages have a minimal amount of
documentation and robustness

I Obtained from CRAN, Bioconductor, Github, etc.



Summary

I Create a new directory with R/ and man/ sub-directories (or
just use package.skeleton())

I Write a DESCRIPTION file
I Copy R code into the R/ sub-directory
I Write documentation files in man/ sub-directory
I Write a NAMESPACE file with exports/imports
I Build and check


