
Shiny Gadgets

The Johns Hopkins Data Science Lab

August 26, 2016

Introduction

Shiny Gadgets provide a way to use Shiny’s interactivity and user
interface tools as a part of a data analysis. With Shiny Gadgets you
can create a function that opens a small Shiny app. Since these
apps are smaller we’ll be using the miniUI package for creating user
interfaces.

A Simple Gadget

At its core a Shiny Gadget is a function that launches a small
(single-page) Shiny application. Since Shiny Gadgets are meant to
be displayed in the RStudio viewer pane, the miniUI package comes
in handy for its smaller graphical elements. Let’s construct a very
simple Shiny Gadget.

A Simple Gadget: Code

library(shiny)
library(miniUI)

myFirstGadget <- function() {
ui <- miniPage(

gadgetTitleBar("My First Gadget")
)
server <- function(input, output, session) {

The Done button closes the app
observeEvent(input$done, {

stopApp()
})

}
runGadget(ui, server)

}

A Simple Gadget: Image

A Simple Gadget: Code Review

Source the preceding code and run myFirstGadget() to see a very
basic Shiny Gadget. Just to review some of the new functions in
this Gadget:

I miniPage() creates a small layout.
I gadgetTitleBar() provides a title bar with Done and Cancel

buttons.
I runGadget() runs the Shiny Gadget, taking ui and server

as arguments.

Gadgets with Arguments

One of the advantages of Shiny Gadgets is that since Shiny Gadgets
are functions they can take values as arguments and they can return
values. Let’s take a look at a simple example of a Shiny Gadget
that takes arguments and returns a value. The following Shiny
Gadget takes two different vectors of numbers as arguments and
uses those vectors to populate two selectInputs. The user can
then choose two numbers within the Gadget, and the product of
those two numbers will be returned.

Gadgets with Arguments: Code Part 1

library(shiny)
library(miniUI)

multiplyNumbers <- function(numbers1, numbers2) {
ui <- miniPage(

gadgetTitleBar("Multiply Two Numbers"),
miniContentPanel(

selectInput("num1", "First Number", choices=numbers1),
selectInput("num2", "Second Number", choices=numbers2)

)
)

Gadgets with Arguments: Code Part 2

server <- function(input, output, session) {
observeEvent(input$done, {

num1 <- as.numeric(input$num1)
num2 <- as.numeric(input$num2)
stopApp(num1 * num2)

})
}
runGadget(ui, server)

}

Gadgets with Arguments: Image

Gadgets with Arguments: Code Review

Source the preceding code and run multiplyNumbers(1:5, 6:10)
so you can get a sense of how this Gadget works. As you can see
this Gadget uses selectInput() so that the user can select two
different numbers. Clicking the Done button multiplies the tow
numbers together, which is returned as the result of the
multiplyNumbers() function.

Gadgets with Interactive Graphics

Shiny Gadgets are particularly useful when a data analysis needs a
touch of human intervention. You can imagine presenting an
interactive data visualization through a Gadget, where an analyst
could manipulate data in the Gadget, and then the Gadget would
return the manipulated data. Let’s walk though an example of how
this could be done.

Gadgets with Interactive Graphics: Code Part 1

library(shiny)
library(miniUI)

pickTrees <- function() {
ui <- miniPage(

gadgetTitleBar("Select Points by Dragging your Mouse"),
miniContentPanel(

plotOutput("plot", height = "100%", brush = "brush")
)

)

Gadgets with Interactive Graphics: Code Part 2

server <- function(input, output, session) {
output$plot <- renderPlot({

plot(trees$Girth, trees$Volume, main = "Trees!",
xlab = "Girth", ylab = "Volume")

})
observeEvent(input$done, {

stopApp(brushedPoints(trees, input$brush,
xvar = "Girth", yvar = "Volume"))

})
}

runGadget(ui, server)
}

Gadgets with Interactive Graphics: Image

Gadgets with Interactive Graphics: Code Review

Source the preceding code and run pickTrees(). Click and drag a
box over the graph. Once you’ve drawn a box that you’re satisfied
with click the Done button and the points that you selected will be
returned to you as a data frame. This functionality is made possible
by the brushedPoints() function, which is part of the shiny
package. (See ?shiny::brushedPoints for more information.)

Conclusion

For more details about Shiny Gadgets visit the Shiny Gadgets
website:

I http://shiny.rstudio.com/articles/gadgets.html
I http://shiny.rstudio.com/articles/gadget-ui.html

http://shiny.rstudio.com/articles/gadgets.html
http://shiny.rstudio.com/articles/gadget-ui.html

